skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Xiaohui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ionization is a fundamental process in intense laser–matter interactions and is known to cause plasma defocusing and intensity clamping. Here, we investigate theoretically the propagation dynamics of an intense laser pulse in a helium gas jet in the ionization saturation regime, and we find that the pulse undergoes self-focusing and self-compression through ionization-induced reshaping, resulting in a manyfold increase in laser intensity. This unconventional behavior is associated with the spatiotemporal frequency variation mediated by ionization and spatiotempral coupling. Our results illustrate a new regime of pulse propagation and open up an optics-less approach for raising laser intensity. 
    more » « less